Recent studies which explore the effect of varying the aspect ratio of the ferromagnetic particles have shown several improvements over conventional MR fluids. Nanowire-based fluids show no sedimentation after qualitative observation over a period of three months. This observation has been attributed to a lower close-packing density due to decreased symmetry of the wires compared to spheres, as well as the structurally supportive nature of a nanowire lattice held together by remnant magnetization.34 Further, they show a different range of loading of particles (typically measured in either volume or weight fraction) than conventional sphere- or ellipsoid-based fluids. Conventional commercial fluids exhibit a typical loading of 30 to 90 wt%, while nanowire-based fluids show a percolation threshold of ~0.5 wt% (depending on the aspect ratio).5 They also show a maximum loading of ~35 wt%, since high aspect ratio particles exhibit a larger per particle excluded volume as well as inter-particle tangling as they attempt to rotate end-over-end, resulting in a limit imposed by high off-state apparent viscosity of the fluids. This new range of loadings suggest a new set of applications are possible which may have not been possible with conventional sphere-based fluids.
Newer studies have focused on dimorphic magnetorheological fluids, which are conventional sphere-based fluids in which a fraction of the spheres, typically 2 to 8 wt%, are replaced with nanowires. These fluids exhibit a much lower sedimentation rate than conventional fluids, yet exhibit a similar range of loading as conventional commercial fluids, making them also useful in existing high-force applications such as damping. Moreover, they also exhibit an improvement in apparent yield stress of 10% across those amounts of particle substitution.6
Newer studies have focused on dimorphic magnetorheological fluids, which are conventional sphere-based fluids in which a fraction of the spheres, typically 2 to 8 wt%, are replaced with nanowires. These fluids exhibit a much lower sedimentation rate than conventional fluids, yet exhibit a similar range of loading as conventional commercial fluids, making them also useful in existing high-force applications such as damping. Moreover, they also exhibit an improvement in apparent yield stress of 10% across those amounts of particle substitution.6
No comments:
Post a Comment